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SIGNIFICANCE AND EXPLANATION
The classical ergodic theory originates from statistical mechanics.
There, one is interested in the existence of limits of certain time
averages of functions of the state of a given deterministic (mechanical)
system. Formulated mathematically the problem reduces to the question
of existence of limits of certain averages of iterates of linear oper-
ators in the discrete case or averages of semigroups of linear operators

in the continuous case.

Recently, similar questions have been studied for some classes of

nonlinear operators. The results that were obtained are rather elegant

and they shed some new light on the classical linear results. The
physical significance of these nonlinear results however is not clear.

In this note we present a simple unified treatment of some of these

recent "nonlinear ergodic" theorems.
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The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.




REMARKS ON NONLINEAR ERGODIC THEORY IN HILBERT SPACE

A. Pazy

8 1. Introduction
&
| % 3 The recent developments in the ergodic theory of nonlinear mappings in Hilbert
%
%’ space started with the result of B. Baillon {1). Baillon considered a nonexpansive
map T of a real Hilbert space H into itself. He proved that if T has fixed
! A points in H then for every x € H, the Cesaro means
" §
: 1 ol 5
(1.1) Optx) = = ] x
¥ j=0

|
|
|
|
|
|

converge weakly as n * ® to a fixed point of T. A corresponding theorem for a

strongly continuous one parameter semigroup of nonexpansive mappings S(t), t >0

2 was given soon after Baillon's work by B. Baillon and H. Brezis [2]. The proof of

—

the result for the continuous case is much simpler than Baillon's proof for the dis- ﬁ
crete case. This is mainly due to the use of the generation theory of strongly
continuous semigroups of nonexpansive mappings in Hilbert space.

Brezis and Browder (6] extended the original result of Baillon to the case of y
more general averages. Similar results were also obtained by R. Bruck [9] and S. Reich ]
[13]. The corresponding version for strongly continuous semigroups of nonexpansive 1
mappings was derived by H. Brezis [4], using the generation theory for such semigroups.
S. Reich [17) derived the same result by reducing the continuous parameter case to the

discrete parameter case.
E -mé purpose of this note is to present the above mentioned results in a unified
simple way. The main property of nonexpansive mappings that is used is that weak

limits of averages of iterates of such mapping are fixed points of all iterates of

these mappings (see lemma 3.3 below). This feature of nonexpansive mappings together

: with some simple facts about weak convergence in Hilbert space, yield the ergodic
{ results.

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024 and by the
National Science Foundation under Grant No. MCS78-01245.
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Section 2 is devoted to some elementary considerations concerning the weak con-
vergence of bounded functions from the reals into a real Hilbert space H. The main
result of this section is proposition 2.3 from which some useful sufficient conditions
for weak convergence are derived. These conditions in turn, are used in section 3 to
obtain a general version of the ergodic theorem, theorem 3.4, for nonexpansive mappings.
Theorem 3.4 contains as special cases the results of [1], [6], [9], [16] in the discrete
case and of [2], [4], [17] in the continuous case. For a similar result in a more
general setup see also Brezis-Browder [7]. 1In the proof of theorem 3.4 no use is made
of the generation theory of strongly continuous semigroups of nonexpansive mappings.
The same proof works in both the discrete and continuous parameter cases. Therefore,
as can be expected, the continuity in the parameter t > 0, of S(t)x is not neces-
sary for the ergodic theorem to hold in the continuous parameter case.

In the last section, section 4, we use the results of section 2 to derive some
recent ergodic results due to P. L. Lions [12] for the products of resolvents of

maximal monotone operators in Hilbert space.
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2. Weak convergence

Let H be a real Hilbert space and let af(t) :D ¢ R+ + H be a fixed bounded
function. The domain D of a(t) will be always assumed to be an unbounded subset
of R'. With the function a(t) we associate the functional
(2.1) F(v) = lim sup|la(t) - v||?

oo

teD
In the rest of this note we will consider limits of a(t) as t * © without explicitly
stating that t > ® in D. The functional F(v) defined above is locally lipschitz
continuous and strictly convex. The strict convexity follows from the identity
2.2) lla-au-a - a)v“2=u||a = u||2+ (1 - a)|a - v||2- 20(1 - a)||u - v||2
which holds for all a,u,v€é€ H and ae R. Moreover, F(v) > += ag ”v” e
and therefore F has a unique minimum in H. We follow M. Edelstein {11] in defining:
Definition 2.1

The unique point a_ € H satisfying

0

(2.3) F(ao) = min F(u)
u€H

is called the asymptotic center of a(t) and it is denoted by a_, = AC(a(t)).

0
We recall the definition of the weak w-limit set W(a(t)) of the function al(t)

(2.4) w(a(t)) = {u:u € H, u= w-lim a(tk), for some sequence ftk}C D, t, * o}
tk-n-
where w-lim denotes the weak limit in H. Denoting by conv W(a(t)) the closed

convex hull of W(a(t)), we have

Proposition 2.2
(2.5) AC(a(t)) € conv W(a(t)).

If moreover, w-lim a(t) = a then a = AC(a(t)).
tro

Proof:

Let a_ = AC(a(t)) and let al be the orthogonal projection of a., on conv W(a(t)),

0 0
then (w - al, al - a)) >0 for every we conv W(a(t)) and consequently

(2.6) lim inf(a(t) - a',a' - a) >0.

t o




T —————T

Passing to the limit through an appropriate sequence of t and using (2.6) in

2.7 later - a ll?=llate) - a*]|%+ 26a(e) - a,a" - ag) +llat - a|I?

.
we obtain
(2.8) Fla,) > F(ad) +[lal - %

From the uniqueness of the minimum of F it follows that a,.= al € conv W(a(t)). The
second part of the proposition is an immediate consequence of the first. L

In our next results we will use the following notations;

(2.9) L=1L(a(t)) = {u: ue H, I lim(a(t),u)}
treo

and

(2.10) N=N@a(t) ={u:ue H g lim|lac) - ul|>}
£t

L 1is obviously a closed linear subspace of H and a(t) converges weakly as t + =

if and only if L = H. From the definition of L it follows that if Wi, € W(a(t))

then (w1 - wz,l) =0 for every L € L. This result extends obviously to every

w, W, € conv W(a(t)). The main result of this section is:

1

Proposition 2.3

N(a(t)) N conv W(a(t)) contains at most one point. If N(a(t)) N conv W(a(t)) # ¢ ¢

2

then

(2.11) {AC(a(t))} = N(a(t)) N conv W(a(t)) .

Proof:

Using polarization it is obvious that if u1 ' “2 € N then u1 -y, € L. Therefore, by
the remarks preceding this proposition, it follows that if u s, € M N conv W then

u = u, and thus NN conv W is at most a singleton. Let {v} = NN conv W. Since

ve N, F(v) = lim|la(t) - v||2. Let weé W, w= w-lim “'1:) and let ue€ H.
oo tk-vo
Passing to the limit as tk + ® in
flace,) - u"z- flace, ) - v||2+ 2(a(t,) - v,v - u) +|lv- \.|||2
x k x .
we find

(2.12) F(u) > F(v) + 2(w - v,v = u) +|v - ull?

-4-
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The inequality (2.12) holds for all w € W and therefore also for all we conv W.

Since v e conv W we can substitute w = v in (2.12) and obtain
2
Flu) > F(v) +|lu - v|| for all ue H.

From the unigueness of the minimum of F it follows that v = AC(a(t)) s
Corollary 2.4

Let b(t) :DCR' » H be bounded. If W(b(t)) C conv W(a(t)N N(a(t)) then

AC(a(t)) = AC(b(t)) and

(2.13) w-lim b(t) = AC(a(t))

tro
Proof:
Since b(t) is bounded W(b(t))# ¢ therefore conv W(a(t))N N(a(t)) # ¢ and by

preposition 2.3 W(b(t))= {AC(a(t))} i.e. w-lim b(t) = AC(a(t)). From proposition 2.2

we then have AC(b(t)) = AC(a(t)). ik .
Corollary 2.4 is a restatement of a generalization given by Brezis and Browder (6]

to a lemma of Opial [13]. Taking b(t) = a(t) in corollary 2.4 we obtain

Corollary 2.5

Let a(t) : DC R’ > H be bounded. If W(a(t)) C N(a(t)) then

(2.14) w-1lim a(t) = AC(a(t)) .
t‘b@

We conclude this section with the following consequence of proposition 2.3

Proposition 2.6

Let a(t) : DC R’ > H be bounded. If N(a(t)) # ¢ then a(t) converges weakly
as t »>® in D if and only if

(2.15) w=lim(a(t + h) - a(t)) =0 f

too

for every h e l!+ for which DODD+h={t +h: te D}

Proof:
Clearly if a(t) converges weakly (2.15) holds. ILet u e N(a(t)) and y € H then
2.16) | [latt+n) - y[|2= [lace) - y[|%[< | [lact+m) = ul|?- [late) - ul|? |

+ 2| (alt+n) - a(t), u - 9| .

-5-




since |la(t) - \.|||2 converges at t * =, (2.16) implies the convergence of |la(t) - yl|?

as t* > for all y € H. Consequently N = H and from proposition 2.3 it follows

that W(a(t)) = AC(a(t)). .

s —————




3. The Ergodic theorem for semigroups of nonexpansive mappings

let DG na+ be an additive semigroup i.e. tl,tz e D imply t1 . t2 € D. The
main examples that we have in mind are D = l!+ and D =:Z+= {n : n & 0}, but the
results apply to any additive semigroup D < 1R+. Since D S_ R+ the order in R
induces a natural order in D. We will continue to assume that D is unbounded, and
t > in D will be usually written as t > ©® without explicitly stating that t € D.

Let C be a closed convex subset of H. A family of mappings S(t) : C * C

t € D is called a semigroup of nonexpansive mappings on C if:

(3.1) S(0) = I, S(t +s) = S(t)eS(s), s,te D
and
(3.2) [Isttrx - S(t)yl|i||x -vy|| for all x,ye c, te D.

We denote by F the (possibly empty) set of fixed points of S(t) i.e.
(3.3) F=1{x: xe€e C, S(t)x = x for all t e D}
Note that in the discrete case, F coincides with the set of fixed points of S(to)
where to is the smallest nonzero element of D.
From (3.2) it follows that F is a closed convex subset of C. For every p € F,
x€e C, s,te D, t>s we have:
(3.4) llstt)yx - p|| = ||s(t - s)es(s)x - s(t - s)p|| <||s(s)x - p|| .
So, if F # ¢, t > S(t)x is a bounded function of D SfR+ into H and
(3.5) F C N(S(t)x) .
Combining this observation with corollary 2.5 we have
Proposition 3.1
If F# ¢ then W(S(t)x) CF implies

(3.6) w-1lim S(t)x = AC(S(t)x) .

to
Proposition 3.1 in the discrete case (D = z’) is the sufficient part of theorem 3 of
[14). In the continuous case (D = R*) it is the sufficient part of theorem 2.1 of
[15]. In [15) the result is stated for semigroups S(t) for which t =+ S(t)x is
continuous in t. The observation that the continuity of S(t)x is not needed in

this result is due to R. Schdéneberg [18].
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Combining (3.5) with proposition 2.6 we obtain the following result of R. Bruck [9].
Proposition 3.2

If F # ¢ then a necessary and sufficient condition for S(t)x to converge weakly as
£+® in P is

(3.7) w-lim(S(t+h)x - S(t)x) = 0 for all he D.
o

We turn now to the ergodic theorem for S(t)x, that is the weak convergence of
averages of S(t)x. In order to state the result we consider functinns
Q(s,t) : DxD + (0,«)
and assume that there is a translation invariant measure u on D such that for every
8 € D, Ols,t) : D+R+ is u measurable. In the case D -R‘, p is the vusual
Lebesgue measure whereas in the case D =Z+ it is a discrete measure. We will assume
that for every s € D, Q(s,t) 1is of bounded variation and its total variation will bhe

denoted by V(s). The function Q €&, if moreover:

(3.8) [ Q(s,t)au =1 for all se€ D
D
(3.9) limf Q(s,t)du = 0 for every s € D and T < « .
s+ DN[0,T]
and
(3.10) lim V(s) = 0 .
s-bﬂ

Assuming that t » S(t)x is strongly uy-measurable and that Q e & we define
the Q-averages o(s)x of S(t)x by

3,10 ° o(s)x = [ Q(s,t)S(t)x du
D

The next lemma is the principal ingredient of the ergodic results.

Lemma 3.3

Let S(t) be a semigroup of contractions on C' CH. If F#¢, Q€ &8 and o(t)x
is defined by (3.11) then

(3.12) W(o(t)x) CF for every x€ C .




Proof:

Let x € C be fixed and y € C, t,h € D. From
b 0 <|lstrx - y[|?- llsct +mx - styyl|?<
: (3.13)
2 2 2
<|Istt)x - sty||“-|Is(t+n)x - s(h)y||“+ 2(s(t)x - S(h)y, Sthiy - y) + ||y - st)yll

it follows upon multiplying by Q(s,t) and integrating over D that

0 < [ ots,)listrx - stmyyl|®- lIste+mx - smiyll?) au 3
D
(3.14) ) 3
+ 2(a(s)x - S(h)y, S(h)y - y) +|ly - sthy]|

Since F # ¢, ||S(t)x - S(h)y||? is bounded and it follows from (3.9) and (3.10) that

lim swp [ (s, 0)(|s(t)x - smyy|l®- [[s(t+nx - smyll®) au = o.

s

g D
If O(Sk) converges weakly to p as Sk + ®, then passing to the limit through the
sequence s, in (3.14) we find
(3.15) 0 <2(p - Sy, Shly - y) +|ly - sty||®> for all ye c.

From (3.8) and (3.11) it follows that o(s)x € C for evervy s € D and therefore

p € C. Substituting y = p in (3.15) yields S(h)p = p and since h € D was

e, TSI b 2 b ST b o RS, R,

arbitrary, p € F.

Combining lemma 3.3 with corollary 2.4 we obtain
Theorem 3.4
Let S(t), te D be a semigroup of nonexpansive mappings on CC H. If F # ¢ and

Qe& then

(3.16) w-lim g(t)x = p = AC(S(t)x)
toro

holds for every x € C.

S TR,

For the case D =Z+ theorem 3.4 was proved by Baillon [1], in the case of
Cesaro means. Simpler proofs of Baillon's result were subsequently given by L. Tartar
(unpublished) and (6], [14]. The general resullt for D =z+ is given in [6], [9], [17].
For the case D = R+, for Cesaro means, the theorem is given in [2]. The general case

+
D =R was proved in [4], [17]. 1In these results the continuity of t * S(t)x is

T

i ’ used in the proof. As it turns out from theorem 3.4 this continuity is not needed for

S
SR N




the result. 1In order to define

o(s)x we had to assume that t + S(t)x is strongly
i measurable on (0,*). This implies, see [10), that t -+ S(t)x is continuous on

(0,%) but not necessarily on [0,®)

S

as was assumed in [41, [17]. "
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4. An ergodic theorem for products of resolvents

Let H be a real Hilbert space and let A be a maximal monotone operator in H.
For the definition and elementary properties of maximal monotone operators the reader

is referred to the texts (3], [5].

1

For A > 0 the resolvent J, of A is defined by J, = (I + AA)""  and it is

A A

: . . +
well known that JA : H-+ H is nonexpansive. Given X, € H and a sequence (Xn} CR
we define a sequence X in H by:

(4.1) x =J x S e SRR

We denote by F the set A'lo. If pe F then pr = p for every ) > 0. Therefore,

for p€ F we have

(4.2) lx-pll = 119, %,y = 3, oll <llx,_, - el
and thus
(4.3) F g_N((xn}) @

If F# ¢ and xn =) forall n=1,2,... then xn = szo and it follows from

theorem 3.4 that the Cesaro means
n~1

1 k
(4.4) o (x) == z J. x
n 0 n X=0 A

0
n
converge weakly as n » ®» to the asymptotic center of the sequence {Jlxo}. Our next
proposition generalizes this result.
Proposition 4.1

et ()} cR' be such that | A == If x_is the sequence defined by (4.1),
k=0

F # ¢ and
(4.5) y = (E T E Ax  n=0,1,...
n k=0 k k=0 k k
then the sequence yn converges weakly as n—+ © to a point p€ F. Moreover the
weak limit p of is the asymptotic center of the sequence {xn};
Proof:
Obviously W({yn})c conv H({xn)). Using corollary 2.4 it suffices to prove that
w((yn}) [~ N((xn)). To do this we note that by (4.3) F C N({xn}) and so it suffices

to show that W((yn}) CF.

ey S b




Let [£,n] € A. From the definition of x ~we have

T

2

1 = 1w, -4 Wi L Biess

2
(4.6)  lx - €]+ 2A (x -6+ |x -x |

n-1

3 Therefore
i 2 2
f : 2 (nx -8 2 |x , -&l°- lx - €l

E é which implies
n
» -1 2
.7 2(ny, =€) < [kzo AT llxg- Ell”

Let y € w({yn}) such that
w-limy =y
x&-oo
Passing to the limit through the sequence n in (4.7) yields

(n,y - &) Sl 0 [E,n] € A.

From the maximality of A we deduce y € A-lo = F and the proof is complete. L

Proposition 4.1 is essentially due to P. L. Lions [12]. It is interesting to know
that if Ehi = », the sequence {xn} itself converges weakly. This was proved by
H. Brezis and P. L. Lions [8). 1In particular in the case An =i, F #4¢, Jﬁxo
converges weakly as k -+ ® and as a consequence, of course, an(xo) converges weakly
without reference to theorem 3.4. We conclude this section by proving the above
mentioned result of Brezis and Lions.
Proposition 4.2

Let {xn} be the sequence defined by (4.1). If F # ¢ and Z A: = «» then x
n=0

converges weakly as n -+ «,

3 ¥ Proof:

We deduce proposition 4.2 from corollary 2.5. In view of (4.3) we have only to show

e T T S

that W({xn}) CF.

From the definition of x it follows th‘t A-l(x -x ) =y € Ax . From
n n n n-1 n n

the monotonicity of A we have

1
- (yn+1 G yn' xn+1 5 xn) g An+1(yn+1 2 yn' Yn#l)

(4.8)

«~]2=
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and therefore n + “ynllz is monotone nonincreasing. Moreover, taking £ € a"lo
in (4.6) yields
2 12 2 2
.9 A < = = =
(4.9) ol 1l ~ el Il - ell
and therefore by summing over n,
A G e - SR 2 2
ly 12 1 a2 < T a2lly, 1< llx, - €ll
k=0 k=0
which implies AL 0O as n +»®, Let xe€ H((xn}), from the monotonicity of A
we have
(n - Yeh = xn) >0 v(E,n) € A
and passing to the limit as n » ® through an appropriate subsequence we find
(M,&-x) >0 v[E,n] € A

which by the maximality of A implies x € A-lo = F and the proof is complete. L
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